Multistage stochastic convex programs: Duality and its implications

نویسندگان

  • Julia L. Higle
  • Suvrajeet Sen
چکیده

In this paper, we study alternative primal and dual formulations of multistage stochastic convex programs (SP). The alternative dual problems which can be traced to the alternative primal representations, lead to stochastic analogs of standard deterministic constructs such as conjugate functions and Lagrangians. One of the by-products of this approach is that the development does not depend on dynamic programming (DP) type recursive arguments, and is therefore applicable to problems in which the objective function is nonseparable (in the DP sense). Moreover, the treatment allows us to handle both continuous and discrete random variables with equal ease. We also investigate properties of the expected value of perfect information (EVPI) within the context of SP, and the connection between EVPI and nonanticipativity of optimal multipliers. Our study reveals that there exist optimal multipliers that are nonanticipative if, and only if, the EVPI is zero. Finally, we provide interpretations of the retroactive nature of the dual multipliers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Working Paper on Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs on Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs on Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs

A general decomposition framework for large convex optimization problems based on augmented Lagrangians is described. The approach is then applied to multistage stochastic programming problems in two di erent ways: by decomposing the problem into scenarios and by decomposing it into nodes corresponding to stages. Theoretical convergence properties of the two approaches are derived and a computa...

متن کامل

On the Convergence of Decomposition Methods for Multistage Stochastic Convex Programs

We prove the almost-sure convergence of a class of samplingbased nested decomposition algorithms for multistage stochastic convex programs in which the stage costs are general convex functions of the decisions, and uncertainty is modelled by a scenario tree. As special cases, our results imply the almost-sure convergence of SDDP, CUPPS and DOASA when applied to problems with general convex cost...

متن کامل

Duality gaps in nonconvex stochastic optimization

We consider multistage stochastic optimization models containing nonconvex constraints, e.g., due to logical or integrality requirements. We study three variants of Lagrangian relaxations and of the corresponding decomposition schemes, namely, scenario, nodal and geographical decomposition. Based on convex equivalents for the Lagrangian duals, we compare the duality gaps for these decomposition...

متن کامل

Convergence Analysis of Sampling-Based Decomposition Methods for Risk-Averse Multistage Stochastic Convex Programs

We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals OR

دوره 142  شماره 

صفحات  -

تاریخ انتشار 2006